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Abstract: Recent developments in our understanding of the limitations of optically stimulated lumi-
nescence as a dating tool are presented alongside summaries of results obtained on other lumines-
cence signals measured in sedimentary quartz grains. 
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1. INTRODUCTION 

Since measurement of the optically stimulated lumi-
nescence (OSL) from quartz was first carried out by 
Huntley et al. (1985), OSL dating has become a popular 
technique for establishing the depositional age of sedi-
ments. Initially, optical stimulation of quartz was 
achieved using the green light (514 nm) from an argon 
ion laser, but this was an expensive system to set up. 
Routine dating of quartz was able to take place once first 
blue/green light from a filtered lamp and then blue (470 
nm) LEDs were available for optical stimulation. 

Measurement procedures have been developed in 
which the equivalent dose (De) is obtained on single ali-
quots for quartz (Murray et al., 1997). In single-aliquot 
regenerative-dose procedures, the natural OSL signal is 
compared with the OSL signals resulting from doses 
being given to the same aliquot. In particular, a single-
aliquot regenerative-dose (SAR) protocol was developed 
(Murray and Wintle, 2000) in which there is correction 
for sensitivity change during the measurement sequence. 
The ease of use of this protocol and the ability to make 
multiple De determinations with a limited amount of 
prepared quartz has led to its widespread application in 
OSL dating. The experimental data and philosophy be-
hind the SAR protocol was reviewed by Wintle and 
Murray (2006). 

Dating sedimentary quartz using the SAR protocol 
has been carried out on a range of depositional environ-
ments and there have been a number of recent reviews; 
aeolian (Roberts, 2008; Singhvi and Porat, 2008), coastal 

(Jacobs, 2008), fluvial (Rittenour, 2008), hillslope (Fuchs 
and Lang, 2009) and even some glacial (Fuchs and Owen, 
2008), glaciofluvial (Thrasher et al., 2009) and perigla-
cial (Bateman, 2008) environments. OSL dating of quartz 
has also been successful in the dating of sediments en-
closing archaeological material. In particular, extensive 
studies in southern Africa have been used to date cultural 
items, such as ochre (Jacobs et al., 2006; Marean et al., 
2007) and the remains of shellfish (Marean et al., 2007), 
and the use of fire for improving the flaking potential of 
silcrete (Brown et al., 2009). In addition, by applying 
identical single grain procedures at several sites with two 
diagnostic stone tool industries, Jacobs et al. (2008a) 
have been able to date them and calculate the time that 
elapsed between the end of one industry and the start of 
the other. It has also been applied to a number of sites in 
North Africa where distinctive stone tool industries are 
present (e.g. Barton et al., 2009) and shell beads and 
ochre have been found (Bouzzougar et al., 2007). 

OSL dating of the sediments found at archaeological 
sites has been greatly aided by the development of in-
struments that enable measurement of the OSL signals 
from individual quartz grains (Duller et al., 1999). This 
has led to a better understanding of the effects of variabil-
ity in the dose rate in an inhomogeneous sediment unit, 
e.g. due to the presence of regions of both high and low 
radioactivity (e.g. Jacobs et al., 2008b). In addition, the 
ability to use the SAR protocol to measure De values for 
single grains makes it possible to identify those grains 
that have not had their OSL signal completely zeroed 
prior to deposition (e.g. Thomsen et al., 2007), or grains 
which are intrusive. The impact of being able to make 
OSL studies on single grains has recently been reviewed 
(Duller, 2008).  Corresponding author: A.G. Wintle 

e-mail: aqw@aber.ac.uk 
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In this paper, I would like to review some new ap-
proaches that may be used to overcome problems which 
occur when the fast OSL component is not dominant and 
to extend the time period over which luminescence dating 
of quartz can be applied. 

2. OSL 

This review builds on that published two years ago as 
part of a special issue of the journal Boreas (Wintle, 
2008). In it, I discussed that, although the light sensitivity 
and thermal stability of the fast OSL component make it 
ideal for dating Quaternary sediments, the age range is 
limited owing to saturation as the traps are filled with 
continuing exposure to radiation in the natural environ-
ment. I also discussed analytical methods that have been 
used to separate the fast component, as it is this signal for 
which the SAR protocol was developed (Wintle and 
Murray, 2006). 

Although a number of OSL components are seen in 
any particular quartz, it has so far been impossible to 
conclusively link any one component to any lattice defect 
(Preusser et al., 2009). On the other hand, the lumines-
cence centre responsible for the OSL emission at room 
temperature at 380 nm has been linked to an [AlO4]o hole 
trap, based on a direct correspondence between the OSL 
signal intensity and the aluminium concentration in a 
synthetic crystal (Martini et al., 2009); the emission peak 
in that study is similar to the peak at 365 nm observed for 
sedimentary quartz (Huntley et al., 1991). By necessity, it 
is this emission that is observed when optical stimulation 
is at 470 nm. 

3. MATHEMATICAL FITTING OF OSL COMPO-
NENTS FOR LIGHT SENSITIVITY 

Under constant stimulation power, as usually used in 
dating measurements, the OSL decay curve can be repre-
sented by the sum of a finite number of exponential func-
tions, as first shown by Bailey et al. (1997) and found in 
more recent studies (e.g. Steffen et al., 2009; Shen and 
Mauz, 2009; Bailey, 2010; Pawley et al., 2010). Each 
exponential decay represents one OSL component. If the 
stimulation intensity is ramped with respect to time (Bu-
lur, 1996), the linearly modulated OSL (LM-OSL) signal 
that results has a number of peaks (e.g. Bulur et al., 2000; 
Kiyak et al., 2007; Polymeris et al., 2008; Pawley et al., 
2010, 2008). However, it has been pointed out that no 
better separation of the OSL components can be achieved 
using LM-OSL than OSL under continuous stimulation 
(Wallinga et al., 2008; Bos and Wallinga, 2009). Bos and 
Wallinga (2009) concluded that, from a practical point of 
view, CW-OSL is to be preferred for routine dating 
measurements as it is the quickest stimulation mode and 
gives the highest signal-to-noise ratio; also they conclude 
that for visualisation of the components, a mathematical 
transformation of the CW-OSL decay curve to give a 
pseudo-LM-OSL signal (Bulur, 2000) is helpful. 

These mathematical analyses enable the photoionisa-
tion cross-sections for the particular wavelength of the 
stimulation source to be obtained for each type of trap, 
provided the power provided by the source is known. 

This enables the light sensitivity of different OSL signals 
from quartz to be obtained. For studies made with blue 
LEDs emitting at 470 nm, the values for the fast OSL 
component are similar; e.g. 2.32±0.16, 2.5±0.3, 2.0, 1.0-
1.9, 3.6±0.4, 2.32±0.02×10-17 cm2 obtained by Jain et al. 
(2003), Singarayer and Bailey (2003), Choi et al. 
(2006a), Steffen et al. (2009), Shen and Mauz (2009) and 
Pawley et al. (2010), respectively. The similarity (within 
a factor of 3) of these results suggests that the electron 
trap giving rise to the fast OSL component may be uni-
versally present in quartz, and thus related to a particular, 
but unknown, defect. When the fast OSL component is 
weak, it may be because of a low concentration of either 
this defect or the luminescence centre. 

Analysis of the OSL components remaining after the 
fast OSL component has been removed by bleaching is 
more uncertain. Jain et al. (2003), Singarayer and Bailey 
(2003) and Choi et al. (2006a) found a single medium 
component with a photoionisation cross-section of around 
5.7×10-18 cm2, Steffen et al. (2009) found a value be-
tween 1.4 and 2.0×10-18 cm2, whereas Shen and Mauz 
(2009) and Pawley et al. (2010) reported more than one 
component with values of photoionisation cross-section 
that spanned this value. It is not clear whether these dis-
crepancies relate to the difficulty of curve fitting and the 
precise method of analysis used, rather than the nature of 
the defects responsible. This problem could also be 
brought about by the different grains that make up an 
aliquot having different photoionisation cross-sections 
(Adamiec, 2005), or apparently different photoionisation 
cross-sections resulting from differences in light penetra-
tion into the crystals. Simulated data suggest that when 
there are many components, fitting will always result in a 
small number of exponential components, even if they 
have no physical meaning. 

4. THERMAL STABILITY OF COMPONENTS 

Information needs to be provided on the thermal sta-
bility of each component. This is achieved by measuring 
the depletion of the electrons in each OSL trap resulting 
from heat treatment. This may be made by rapid heating 
to increasingly high temperatures, termed pulse annealing 
(see Bulur et al., 2000; Jain et al., 2003; Singarayer and 
Bailey, 2003; Li and Li, 2006). Following each heating, 
the OSL is measured and the components separated. The 
effect of heating on the LM-OSL signal has recently been 
modelled (Chruścinska, 2009). Kitis et al. (2007) showed 
that the ultrafast component (seen occasionally) and one 
of the slow components are less thermally stable than the 
fast component. Similar measurements have been made 
for sedimentary quartz with a weak fast component and 
for the calibration quartz provided by Risø National 
Laboratory (Steffen et al., 2009). The medium compo-
nents for these two samples were found to have similar 
thermal stabilities, considerably less than that for the fast 
components, as also found by Li and Li (2006), Bailey 
(2010), and Pawley et al. (2010). However, others report 
that the medium component is more thermally stable (e.g. 
Jain et al., 2003; Singarayer and Bailey, 2003). More 
information on the thermal stability of these less light 
sensitive traps may also be obtained if TL measurements 
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are made after the removal of the various OSL compo-
nents (e.g. Kitis et al., 2010). 

For samples with a weak fast OSL component, the 
thermal stability of the medium OSL component becomes 
important as it will contribute to the initial signal that is 
usually used for dating. It is thus vital to ascertain 
through experiments whether a medium component is 
contributing to the OSL signal used for dating and 
whether it is thermally stable or not. A simple test to see 
if there is an unstable component is to take the ratio of the 
OSL decay curves resulting from the natural dose and 
from a regenerative dose; if the medium component is 
sufficiently unstable, the ratio will decrease with stimula-
tion time. The instability of the medium OSL component 
will also be seen if the equivalent dose obtained from the 
SAR protocol decreases when it is plotted as a function of 
stimulation time, so called De(t) plots (Bailey, 2000a; 
2003a,b; Bailey et al., 2003). Other examples from round 
the world have been presented by Rittenour et al. (2005), 
Shen and Mauz (2009) and Bailey (2010). If the medium 
OSL component is less thermally stable, then the most 
appropriate temperature for the preheat in the SAR proto-
col can be determined using the ratios of the decay curves 
obtained in the pulse annealing study (Steffen et al., 
2009). 

Rather than routinely apply mathematical fitting pro-
cedures to every CW-OSL decay curve measured in a 
SAR protocol, Pawley et al. (2010) suggested using for 
equivalent dose determination the very first data channel 
(in their case 0.4 s) and then subtracting the data from the 
next channel (0.4 to 0.8 s), as had been previously tested 
for individual grains from very young sediments; this is 
termed the early background subtraction (EBG) method 
(Ballarini et al., 2007). The subtraction will remove as 
much as possible of the medium component, but the 
quartz needs to have a relatively bright signal to achieve 
sufficient precision. Pawley et al. (2010) tested this pro-
cedure on twelve samples from one site. The values of De 
obtained using the EBG data were within 1% of those for 
the separated fast component, which in turn were 10% 
greater than those using the standard procedure (i.e. the 
initial 0.8 s with background being derived from much 
later in the decay curve). 

5. EXPERIMENTAL SELECTION OF THE FAST 
OSL COMPONENT 

As discussed in the previous section, the fitting of 
mathematical functions to either CW-OSL or LM-OSL 
signals can allow the fast OSL component to be sepa-
rated. However, it would be preferable if electrons from 
the trap giving rise to the fast OSL component obtained 
under blue (470 nm) stimulation could be stimulated 
preferentially. Greater separation of the components can 
be achieved if the wavelength is increased (Singarayer 
and Bailey, 2004). Green (530 nm) stimulation has been 
used (Thomsen et al., 2006). To obtain even greater sepa-
ration, infrared stimulation (~830 nm) has been used, 
though a higher stimulation temperature is required to 
cause a reduction in the initial part of the OSL signal 
(Jain et al., 2005). However, it should be noted that by 
investigating the LM-OSL curves after IR exposure, 

Polymeris et al. (2008) concluded that both the medium 
and fast components were affected by IR exposure at a 
number of temperatures above room temperature. SAR 
protocols using stimulation temperatures of 190°C or 
150°C have been developed by Bailey (2010) and Fan et 
al. (2009), respectively. However, use of IR stimulation 
requires the samples to be relatively bright and complete 
removal of electrons from the traps during the SAR pro-
tocol needs to be achieved using more energetic stimula-
tion (e.g. at 470 nm). 

6. USING OSL SIGNALS OTHER THAN THE FAST 
COMPONENT 

Since the dose response curves for the fast OSL com-
ponent always contain a component that saturates at low 
doses (e.g. Roberts and Duller, 2004), other luminescence 
signals have also been investigated. There is a slow OSL 
component that has better growth with dose (e.g. Bailey, 
2000b; Singarayer et al., 2000; Rhodes et al., 2006); 
however, this slow OSL signal is much more slowly 
bleached in nature and runs the risk of containing a pre-
depositional signal, resulting in age overestimation. It is 
also difficult to isolate. 

More extensive studies into yet another OSL signal 
have been successful in providing another SAR protocol 
for dating older samples. A thermally-transferred OSL 
(TT-OSL) signal is observed when quartz is heated after 
it has had a previous light exposure. The optical and 
thermal behaviour of the TT-OSL signal has been charac-
terised (Wang et al., 2006a, 2006b) and a SAR protocol 
has been developed (Wang et al., 2007). Subsequently, 
the SAR procedure for TT-OSL has been modified and 
made easier to apply by a number of authors (e.g. Tsu-
kamoto et al., 2008; Kim et al., 2009; Porat et al., 2009; 
Stevens et al., 2009) and the production of the TT-OSL 
signal has been modelled (Adamiec et al., 2008; Pagonis 
et al., 2009). The TT-OSL signal is less optically sensi-
tive than the fast OSL signal, but has a similar thermal 
stability. Its major advantage is the continued growth of 
the signal to doses of more than ~ 1 kGy. It has been used 
with success on aeolian deposits, e.g. loess (Wang et al., 
2007) back to the Brunhes-Matuyama time-marker hori-
zon at 780 ka and has been tested on sandy near-shore 
deposits (Athanassas and Zacharias, 2010). Further tests 
on known age material are required. 

7. USING LUMINESCENCE SIGNALS OTHER 
THAN OSL 

Another signal investigated for dating is the isother-
mal TL (ITL) signal, i.e. the phosphorescence observed 
when quartz is held at a fixed temperature (Choi et al., 
2006b; Buylaert et al., 2006; Huot et al., 2006; Jain et al., 
2007a, 2007b; Vandenberghe et al., 2009). However, 
irreversible sensitivity changes during measurement of 
the natural signal (Buylaert et al., 2006; Huot et al., 
2006) make single aliquot procedures impractical and in 
any case, for some samples there is little extension of the 
dose range (Vandenberghe et al., 2009; Jain, 2009). 

Investigation of the effect of blue light on the ITL led 
Jain (2009) to conclude that there was a thermally stable 
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electron trap that was hardly affected by exposure to blue 
light, but one which was zeroed by exposure to sunlight. 
It is virtually impossible to separate this component by 
curve fitting; however, Jain (2009) used a solid state 
violet (405 nm) laser diode to measure an OSL signal 
from quartz that had previously been heated to 340°C (to 
remove thermally unstable, slow OSL components) and 
then bleached with blue (470 nm) light (to empty the 
saturating fast OSL component trap). A SAR protocol 
based on this measurement procedure resulted in a dose 
response curve with a ten-fold increase in potential dose 
range. 

TL measurements have also been used in a protocol 
developed for quartz of volcanic origin for which the 
SAR OSL procedure for violet emission proved problem-
atic (Lai et al., 2006). In volcanic quartz, red ITL emis-
sion with a peak at 630 nm is observed (Tsukamoto et al., 
2007). However, the red TL signal does not reach zero 
when exposed to sunlight (Miallier et al., 2006; Lai and 
Murray, 2006; Ganzawa and Maeda, 2009) and thus a 
dual-aliquot protocol using the red ITL measured at 
260°C was developed to take account of the residual 
levels (Westaway and Roberts, 2006). This approach has 
been vital in dating sediments in some key sites in south-
east Asia (Morwood et al., 2004; Roberts et al., 2009; 
Westaway et al., 2007, 2009) and the ages obtained using 
this procedure have been shown to agree well with inde-
pendent age evidence (Westaway, 2009).  

8. EXTENDING THE TIME RANGE USING OSL 
MEASUREMENTS 

For many quartz samples, the dose response curve of 
the fast OSL component is best fitted not with a single 
saturating exponential function, but with an additional 
linear function. Such behaviour is relatively common for 
coarse sand sized quartz (e.g. Rhodes et al., 2006; Pawley 
et al., 2008; Murray et al., 2007, 2008; Porat et al., 2009) 
but has also been reported for fine sand sized quartz from 
loess (Buylaert et al., 2008) and for coarse silt sized 
quartz from loess (Lai, 2006; Lai et al., 2007; Lai, 2010). 
However, it has been shown that the relative contribu-
tions of the exponential and linear functions can be 
changed by thermal treatment (Lai et al., 2008). Some-
times a second saturating exponential function provides a 
better fit for large doses than a linear function (Pawley et 
al., 2010). This results in continuing growth of the dose 
response curve, implying that larger doses can be meas-
ured. However, it must be remembered that the contribu-
tion of the saturated function to the dose response curve 
will reduce the usability of the second function. For 
twelve samples at one site, Pawley et al. (2010) were able 
to obtain an age of 438±31 ka, compared with an ex-
pected age of 450±23 ka. 

However, not all OSL dating studies, even those 
which use the fast OSL component, have resulted in ages 
in agreement with independent age estimates beyond 100 
ka. Although Watanuki et al. (2005) obtained ages back 
to 0.6 Ma on Japanese loess using the mathematically-
isolated fast OSL component, a similar study by Lai 
(2010) on Chinese loess resulted in an age of only 107 ka 
for a sample from beneath the Brunhes/Matuyama 

boundary at 780 ka. Also, in their study of sand contain-
ing the transitional Middle/Early Stone Age tool assem-
blage at Kathu Pan, South Africa, Porat et al. (2010) 
obtained an OSL age of 464±47 ka, compared with the 
combined U-series-ESR age of 140

107542+
−  ka 

Another aspect of the SAR protocol that may cause 
the dose response curve to change is whether the doses 
are given using continuous irradiation or whether a 
stepped irradiation procedure is adopted. Such a proce-
dure was suggested by Bailey (2004) in order to make the 
laboratory irradiation regime more similar to that in na-
ture. Qin and Zhou (2009) used a stepped irradiation 
procedure, giving the regenerative dose in ~25 Gy steps 
with a thermal treatment of 250°C for 10 s between each 
step. This resulted in better agreement with the known 
age than when doses up to ten times this were given in a 
single irradiation. However, this procedure does not over-
come the fundamental saturation of the dose response 
curve (e.g. Nian et al., 2009). 

9. CONCLUSIONS 

In the last four years, a large number of papers con-
taining OSL ages for quartz grains from a wide range of 
sedimentary deposits have been published and most of 
these ages have been obtained using the SAR protocol. 
There have also been a small number of papers in which 
OSL ages have been obtained on sediments for which 
there is independent chronological information. The 
chronological information is primarily related to the last 
interglacial, with the fossil soil being found in loess de-
posits and characteristic marine deposits related to the 
high sea-level stand. In addition, there are several sites 
with ages based on uranium-series measurements and in 
the loess deposits there is the magnetic marker horizon of 
the Brunhes-Matuyama boundary. The results from OSL 
dating studies have indicated that at some sites the OSL 
ages are in agreement, particularly if the fast OSL com-
ponent can be isolated mathematically and used for 
analysis instead of the initial signal. However, agreement 
is not universal, and there appears to be no consensus as 
to the precise measurement procedure to be applied. 

Also, for these older samples, the OSL dose response 
curve is fitted by two mathematical functions, one of 
which is a saturating exponential that is already in satura-
tion by the time the natural dose level has been reached. 
Again, if the growth resulting from the second function is 
needed to obtain the equivalent dose, its reliability still 
needs to be proven and guide lines given as to its limita-
tion. It would also be of interest for there to be a mecha-
nism for why the fast OSL component appears to be de-
rived from two sets of traps, one saturating at a dose of 
few hundred Gy and one with a much higher saturation 
level. 

Meanwhile, TT-OSL appears to be a technique that 
can be used on samples going back to the Brun-
hes/Matuyama, but not further owing to it having insuffi-
cient thermal stability. Also, it can be applied only to 
quartz grains that were well bleached at deposition, ow-
ing to the source trap being less optically sensitive than 
the fast OSL trap. A considerable amount of experimental 
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work and related modelling has given us an understand-
ing of the production of the TT-OSL signal and led to 
optimisation of the SAR protocol. 

A number of other signals have been investigated, 
also with the aim of being able to date further back than 
the last interglacial. The blue ITL signal is complex, the 
source of the light-sensitive signal hard to identify and a 
workable SAR protocol is currently hampered by the 
inability to monitor sensitivity changes during the meas-
urements. Other signals, e.g. the red ITL, have been used 
in particular situations where blue signals are too weak 
for OSL measurements, e.g. in the case of sedimentary 
quartz derived from volcanic rocks. 

In conclusion, I encourage all authors publishing pa-
pers containing OSL ages to provide as much detailed 
information on the data obtained as the journal editor will 
permit. This will add to the existing data sets obtained 
during dating runs and in designed experiments. I would 
also make a plea for studies in which the same samples 
are used to obtain OSL data that are then analysed by 
different people using their software; in particular more is 
needed to be known about the medium component – one 
or many? Finally, I think that there is more to be learned 
from the TL runs made after optical stimulation. 
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