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Abstract: The radiocarbon determination of age has the form of a complicated probability density 
function. In some cases however it is possible to exploit it in a precise way, in drawing the depth-age 
curve when a stratigraphic sequence of 14C ages is available. It is also possible to use this function in 
drawing the depth-age curve by hand. The necessary additional constraint on the depth-age curve 
adopted here is the simplicity of its shape, namely the low curvature. 
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1. INTRODUCTION 

The final result of the radiocarbon dating of a sample 
taken from some depth in a profile has a complicated 
form of probability distribution of shape resembling an 
Alpine-type landscape (Fig. 1) rather than the typical 
bell-shaped curve. There is no single value of estimated 
age but a probability distribution over some range of ages 
(see, for example, discussion in Telford et al., 2004). 
However, this situation is not completely different from 
that of the so-called conventional radiocarbon dates 
which are normally (Gauss) distributed. The only differ-
ence is that calibrated age distribution is multimodal, i.e. 
it has many “peaks”. However, this is not necessarily a 
drawback. The simple, symmetric, bell-shape curve of 
conventional 14C date distribution may rather be treated 
as misleading because it suggests that one strict value of 
age can be picked up as a date, while it is still a distribu-
tion over, say, ±3σ around the mid-value.  

Regardless of how complicated the shape of the prob-
ability distribution is, it is possible to include it into pre-
cise, probabilistic calculations necessary in the construc-
tion of the depth-age curve. However, this requires rather 
intensive computer calculations, but the method presented 
below (its idea), can also be applied to drawing the depth-
age “by hand”. The lack of precision in such a case is 

much smaller than that expected from the comparison of 
the human and machine computing power. Generally, the 
subjective natural scientist opinion is frequently underes-
timated in comparison to the “sophisticated” mathemati-
cal models (Bennett and Fuller 2002, Heegaard et al., 
2005). 

The method presented here is based on two general 
constraints of the depth-age curve. The first constraint is 
imposed by the set of radiocarbon dates available for the 
profile. However, this is not sufficient, because many 
different curves can be drawn “through” the dates, even if 
the dates were treated as precise values of age, not prob-
ability distributions. The second, necessary constraint is 
connected to the shape of the depth-age curve and it must 
define the shape of the curve in the sections between 
dates. In general, it is reasonable to assume that the 
depth-age curve should be as smooth (simple) as possi-
ble.  

2. THE CONCORDANCE OF THE DEPTH-AGE 
CURVE WITH DATES 

The depth-age curve considered here is assumed to be 
unequivocal. This means that it is simply the curve, not 
the band of, for example, a confidence interval. If so, the 
curve precisely defines the age at each depth, especially 
at depths where radiocarbon samples have been taken. Of 
course, such an age has to be concordant with the prob-
ability distribution of the radiocarbon determination  Corresponding author: A. Walanus 
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(Fig. 1). For the given age T, and for the given radiocar-
bon date, there is a strictly defined value of the probabil-
ity density f(T). For all N dates made in the profile, there 
are N values of the function fi(Ti), where Ti is the age, 
according to the depth-age curve, at the depth of the i-th 
date.  

The depth-age curve must meet all of the radiocarbon 
dates in the profile. This means that none of the fi(Ti)’s 
could be zero or close to zero. The mathematical formula 
which quantifies such a constraint, is that of likelihood 
(the notion, used by the author in such a context in public 
presentation for the first time in October 2004, Walanus, 
Wasylikowa 2004), i.e. the multiplication of all fi(Ti);  
L = f1(T1) · f2(T2) ·…· fN(TN)=Πfi(Ti). The value of L is 
simply to be as large as possible, for the depth-age curve 
to be accepted as concordant with the radiocarbon dates.  

It is easy to find exactly the largest value of L. The 
ages Ti

top are to be found that maximise fi(Ti
top), which 

means that Ti
top indicates the position of the highest point 

(Fig. 1). However, the depth-age curve drawn through all 
Ti

top would be optimal only from the point of view of 14C 
dating, but it would probably be much less optimal from 
the point of view of the simplicity of the depth-age 
model.  

Keeping in mind that fi(Ti) is “only” a probability, any 
other Ti age can be accepted instead of exactly Ti

top, even 
if it gives the fi(Ti) value, say, only half of the maximum 
fi(Ti

top). Accepting that, for each date, quite a large span 
of values for Ti is allowed, it gives some freedom to 
choose a nice shape of the depth-age curve. The value of 
L needs not be precisely maximal. However, in practice it 
is frequently very close to the maximal value. It depends 
on how self-consistent the set of radiocarbon dates is, 
especially if there are no outliers (Buck et al., 2003) in 
the data. 

In order to calculate the value of L, a computer is nec-
essary. What is more difficult, however, are the necessary 
functions fi(Ti); in numerical form, not only as a plot. 
Typical calibration programs (Bronk Ramsey, 2001) 
rarely give the resulting function in the text form (like: ... 
2345BC-0.85, 2346BC-0.84, ...). It is possible to create a 
special calibration program, using for example MS Excel 
(calibration data are available (Reimer et al., 2004)), 
however, the other possible way is to prepare a program 
for reading out the relative heights of the probability 
function plotted by any professional calibration program. 
The possible precision of such a graphical method is good 
enough. In fact, such a plot can be used immediately, 
with no further processing, for a generation of random 
ages (see below).  

Keeping in mind that the value of f(T) has the sense of 
probability, the hand-drawn method may be recom-
mended as a method for creating the depth-age curve 
instead of precise calculations. Instead of calculating L, it 
may be enough to use such ages Ti, which do not have 
overly low values of fi(Ti). The simplest way is to use the 
95% confidence interval given by the calibration pro-
gram, and to treat ages from that interval as allowed, and 
those from the outside as prohibited. However, seeing the 
shape of the f(T) function (as in Fig. 4), it is easy to keep 
in mind some idea of how low the probability of the cho-
sen T is. If all or many of N values of fi(Ti) are relatively 

low (the L is low in such a case), this means that the 
depth-age curve is not in good agreement with the radio-
carbon dates. 

3. THE SIMPLICITY OF THE DEPTH-AGE 
CURVE 

It is a general rule in the scientific method, to have as 
simple a model as possible (basing on all accessible in-
formation). In the case of the depth-age curve that rule 
can by expressed mathematically as the principle of 
minimisation of the curve’s curvature. Of course, a typi-
cal depth-age curve is not a fragment of a circle, and does 
not have a single value of the curvature. But it is not 
difficult to define the average curvature of any continu-
ous line. It must be mentioned, however, that the first 
derivative of the curve, i.e. the sedimentation rate, should 
also be continuous. This means that no instant changes in 
the sedimentation rate are assumed to occur. If this is not 
the actual case (there are distinct boundaries present in 
the sediment), the idea of the simplicity of the depth-age 
curve is to be slightly reformulated because the curvature 
approaches infinity at the boundaries. 

In such a case, the depth-age curve can have the form 
of a broken line connecting the points (Ti,di), defined by 
the depth (d) and the age (T). The idea of simplicity can 
be transformed to the rule stating that the slopes of the 
neighbouring sections of the broken line may not differ 
too much. 

In the example below (Fig. 5c) a smooth depth-age 
curve is used, with no radical changes in sedimentation 
rate. The curve is composed of “cubic splines”. These are 
pieces of such polynomials of the third order that, when 
connected with one another in the points (Ti,di), create a 
smooth line with no bends (not V, only U or S-shaped 
connections).  

The average curvature is calculated based on partial 
curvatures calculated for small (e.g. 30-cm-long) pieces 
of the profile (Fig. 2). The partial curvature is the differ-
ence between the age according to the curve, and the age 

Fig. 1. The result of radiocarbon dating – the probability density func-
tion f(T), as a function of age T. The upper section presents the view of 
the Alpine-type function as “seen” by the bird’s eye. Such picture, in 
grey-scale, seems to resemble reality better, since f(T) is the “only” 
probability, not a “hard” quantity such as age or depth (it is an opposite 
point of view to presented by Benett (1994) considering “precise confi-
dence intervals”). The scale of the grey is chosen so that the zero 
probability is white, and the maximal probability is black. It is not good 
practice, but broadly accepted, to assign some absolute value (“black” 
or “1”) to the maximal value of a particular density function. From 
another point of view, however, the true values of f(T), which are of the 
order of 0.01year--1, are of little practical use. 
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according to the interpolation (see Fig. 2). The final, 
general measure of the curvature C is defined as the sum 
of squares of all partial curvatures. The rationale for tak-
ing squares is not only to remove the possible negative 
sign of the measure of curvature, but also to increase the 
significance of pieces with an especially high curvature. 
It is important to avoid even small fragments with bends 
or wiggles.  

A lower average curvature C means a better depth-age 
curve (in the sense of simplicity). 

If the method of manual plotting of the depth-age 
curve is adopted, it is also possible to simply avoid high 
curvatures or abrupt changes in slope. 

4. GENERATION OF THE BEST DEPTH-AGE 
CURVE 

For the given depth-age curve the value of L and C 
can be calculated. However, the problem is how to find 
the curve with the highest possible L, and the lowest 
possible C. The computer-intensive Monte Carlo method 
can be used here. Many (very many) sensible curves are 
created and examined for L and C. Of course, it may be 
expected that a different curve will give the highest L, 
and different one will give the lowest C. In fact, some 
compromise is necessary. 

The algorithm of obtaining the best depth-age curve is 
as follows. Using a fast computer (i.e. the typical, con-
temporary one), do: (1) for each i-th date generate the 
value of age Ti (see description below for instructions), 
(2) draw cubic splines through the points (Ti,di), i.e. pro-
duce the depth-age curve, (3) calculate L and C, (4) re-
peat points (1)-(3) 1,000 or 10,000 times, (5) chose the 
curve with a high L and low C (Fig. 3), (6) inspect the 
chosen curve visually.  

The generation of the value of the age Ti, in principle 
should be based on the respective i-th radiocarbon date 

(probability density function), however this is not actu-
ally necessary as the value of L is calculated in the next 
step. The values of Ti would be taken randomly, accord-
ing to the uniform distribution from the age span which 
contains all the probability distribution. It is only a ques-
tion of economy of calculations, i.e. how many depth-age 
curves are to be produced in order to find one that is good 
enough.  

A faster way is to take T from the true distribution, 
not the approximated uniform. The method of generation 
is easy, and it can be instructive also in the case of the 
manual creation of the depth-age curve. The steps are as 
follows: (1) let Tmin and Tmax denote the minimal and 
maximal age possible according to the radiocarbon result, 
(2) take a random (uniformly distributed) value T from 
the interval (Tmin, Tmax), (3) take the next random, uniform 
value x from the interval (0, fmax), where fmax is the value 
of the highest peak of the age distribution (may be  
fmax = 1), (4) if x< f(T) then accept T as the age, otherwise 
go to (2). 

5. EXAMPLE 

The exemplary profile from Lake Zeribar, Zagros 
Mountains, Iran (Snyder et al., 2001, Wasylikowa and 
Walanus 2004, Wasylikowa et al., 2006) covers the time-
span from the Pleniglacial to the youngest Holocene. In 
this record there are also dates which are too old to be 
calibrated by the precise radiocarbon calibration curve 
(Intcal 04 – Reimer et al. 2004), however, approximate 
calibration is possible (Hughen et al., 2004). The oldest 
radiocarbon dates in Fig. 4 have the form of normal 
(Gaussian) probability distribution which does not create 
any problems in applying the method described above. 

Since the 3D (axonometric) plot is not suitable for any 
operations other than visual inspection, for plotting 

Fig. 2. The measure of the curvature of the depth (d)–age (T) curve. 
The full depth-span of the profile is divided into many small pieces
(such as the one presented here), and the measure of curvature for all
the pieces is calculated. The resulting, average curvature (C) for the 
curve is defined as the sum of squares of all partial curvatures, divided 
by its number. 

Fig. 3. The plot of points (C,L), i.e. the values of likelihood L of ages 
(according to the radiocarbon determinations), and the average curva-
ture C of the depth-age curve. (The logarithm of L is in fact plotted 
here.) Each point corresponds to one depth-age curve. The best 
curves are those from the upper-left corner. Since there is no one 
“precisely” best point, two or three curves could be inspected visually, 
however, differences generally are negligible. It is probably more 
important to have a lower C than the really topmost L, since L is based 
on probability only, while C precisely reflects the shape of the curve. 
You can see that many curves approach the best L (-7.25), while few 
have Cs close to zero. 



DRAWING THE OPTIMAL DEPTH-AGE CURVE ON THE BASIS OF CALIBRATED RADIOCARBON DATES 

4 

depth-age curve manually, the usual 2D plot is to be 
adopted. Consequently, in accordance with Fig. 4, the 
grey scale is used for radiocarbon dates in Fig. 5 because 
it is kind of a bird’s-eye view. However, typical plots 
from calibrated programs may also be used.  

A specialised computer program, or the scientist who 
possesses a priori knowledge about the profile, must 
draw the depth-age curve through the peaks, or at least 
through the higher parts of 14C probability distributions, 
keeping the curve as smooth as possible. The difference 
between machine and personal drawing is mainly in that 
we know precisely what kind of knowledge a computer 
uses, while the influence of the subjective experience and 
the knowledge (stratigraphy, lithology, ...) is difficult to 
appreciate. It is disputable which method is better. The 
abstract, machine precision cannot guarantee correctness 
of the final result if one or more 14C dates are incorrect. 
According to the common opinion: “... even in the most 
carefully managed radiocarbon dating projects ... each 
sample has a 1 in 10 chance of being an outlier” (Buck et 
al., 2003). 
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