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Abstract: Pulse annealing has been the subject of several studies in recent years. In its basic form, it 
consists of relatively short-time optically stimulated luminescence (OSL) measurements of a given 
sample after annealing at successively higher temperatures in, say, 10°C increments. The result is a 
decreasing function with a maximum OSL at low temperatures and gradually decreasing to zero at 
high temperature. Another presentation is that of the percentage OSL signal lost per annealing phase, 
associated with minus the derivative of the former curve, which yields a thermoluminescence (TL)-
like peak. When the heating is performed at different heating rates, the TL various heating rates 
(VHR) method can be utilized to evaluate the trapping parameters. Further research yielded more 
complex pulse-annealing results in quartz, explained to be associated with the hole reservoir. In the 
present work, we simulate numerically the effect, following the experimental steps, in the simpler 
form when no reservoir is involved, and in the more complex case where the reservoir plays an im-
portant role. The shapes of the reduction-rate curves resemble the experimental ones. The activation 
energies found by the VHR method are very close to the inserted ones when the retrapping probability 
is small, and deviate from them when retrapping is strong. The theoretical reasons for this deviation 
are discussed. 
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1. INTRODUCTION 

An important issue concerning thermoluminescence 
(TL) and optically stimulated luminescence (OSL) dating 
is the stability of the age-dependent signal. In particular, 
the evaluation of the activation energies and effective 
frequency factors of the relevant trapping states are of 
great significance. The method of pulse annealing has 
been developed for the evaluation of these magnitudes 
from OSL measurements. This consists of obtaining and 
displaying the thermal stability by plotting the OSL sig-
nal measured at room temperature (RT) or somewhat 
elevated temperature (say, 50°C) remaining after holding 
the sample for fixed time at various temperatures (Bøtter-
Jensen et al., 2003). Rhodes (1988) used 5 minute heat 

treatments at a range of temperatures up to 240°C on 
naturally irradiated sedimentary quartz for the removal of 
the OSL component which has a low thermal stability. 
Duller and Wintle (1991) studied TL and infra-red stimu-
lated luminescence (IRSL) in potassium feldspar sepa-
rates. They describe an experiment of heating the sample 
to 450°C and monitoring the IRSL signal every 10°C to 
see how the temperature of the sample affects the magni-
tude of the IRSL signal.  

Bailiff and Poolton (1991) describe “pulse annealing” 
measurements in feldspars. In their measurement, per-
formed shortly after irradiation, samples were subject to 
cycles of rapid heating to the selected temperature, cooled 
to RT and measurement of IRSL using a short duration 
stimulation was carried out, causing negligible depletion. 
Duller and Bøtter-Jensen (1993) report on the results of 
measurements of OSL stimulated by green and infrared 
light in potassium feldspars. The samples were heated at Corresponding author: R. Chen 

e-mail: chenr@tau.ac.il 
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10°C/s and the luminescence signal was measured for 
0.1 s every 10°C, both with and without optical stimula-
tion, where the TL signal was measured for comparison. 
The OSL signal at any temperature was evaluated as the 
difference between total luminescence and TL. Duller 
(1994) established the method of pulse annealing for the 
analysis of high precision data obtained using IRSL 
measurements. For potassium feldspars, he measured the 
percentage IRSL signal remaining after annealing to 
successively increasing temperatures. For different cir-
cumstances (natural sample, natural + laboratory irradia-
tion, natural + pre-heating) he plotted the IRSL as a func-
tion of temperature. The reported curves have maximum 
(100%) IRSL up to ~250°C, which then gradually de-
creases to practically zero at ~400°C. The short IR light 
pulse only monitors the relevant concentration of trapped 
carriers without bleaching the sample appreciably. Thus, 
the recorded IRSL is a measure of the concentration of 
trapped carriers at different temperatures. Duller (1994) 
also described the same results, plotting the percentage 
IRSL signal lost per annealing phase of 10°C. The results 
have a peak shape which resembles a TL peak. This is not 
too surprising because the procedure depicts in effect an 
approximation to the negative derivative of the relevant 
concentration which, under certain conditions, should 
resemble a simple TL peak (see below).  

Short and Tso (1994) described a way of evaluating 
the activation energies from the descending OSL intensity 
vs. temperature curves. Their OSL curves vs. temperature 
are computer generated using the general-one-trap (GOT) 
approximation, and their retrieved activation energies are 
in good agreement with the parameters taken in the simu-
lation. Huntley et al. (1996) describe “thermal depopula-
tion” in quartz, and from curve fitting of the descending 
OSL signal following subsequent heating to different 
temperatures up to 400°C, an activation energy of 
1.03 eV and a frequency factor of 1.31×108 s-1 were ob-
tained. Li et al. (1997) pursued the close analogy between 
the reduction rate in the OSL intensity of the pulse an-
nealing steps and a TL peak. They performed pulse an-
nealing measurements at different heating rates and as-
suming relatively simple kinetics, used the various heat-
ing rates method for evaluating the relevant activation 
energy from the shift of the reduction rate curve. For K-
feldspar they found an activation energy of 1.72 eV, a 
frequency factor of 6.1×1013 s-1 and hence, a lifetime of 
109 years at an ambient temperature of 10°C. 

Bøtter-Jensen et al. (2003) point out that the interpre-
tation of the plots of remaining OSL after a fixed time at 
various temperatures is complicated by the sensitivity 
change brought about by thermal treatment. Wintle and 
Murray (1998) used the response of the 110°C TL peak to 
a test dose to correct for such sensitivity changes. Li and 
Chen (2001) studied the pulse annealing results and the 
derived OSL reduction rate where, like in quartz, holes 
from a reservoir replenish the hole centre during the heat-

ing stage, thus yielding a peak-shaped pulse-annealing 
curve. The reduction rate curve derived from this has a 
negative minimum and a positive maximum. Both of 
them shifted with the heating rate. Assuming first-order 
behaviour, Li and Chen (2001) evaluated the trapping 
parameters and from them estimated their lifetimes at 
20°C for the OSL trap and the reservoir. A further study 
of the thermal stability and pulse annealing in quartz was 
given by Li and Li (2006). Pulse annealing was also men-
tioned (Bulur et al. 2000, Singarayer and Bailey 2003) 
with regard to the linear modulation technique (LM-
OSL). 

In the present work, we report on our results of simu-
lation of the pulse-annealing effect within a framework of 
a model with a trapping state, a recombination centre and 
a reservoir. We show that, as could be expected, the nu-
merical results are qualitatively rather similar to the ex-
perimental results in quartz as given by Li and Chen 
(2001). The results of the activation energies evaluated 
from simulation of the various heating rate measurements 
deviate in some cases from the values inserted into the 
simulation program; the reasons for this are discussed. 

2. THEORETICAL CONSIDERATIONS 

The simplest, first-order kinetics of luminescence as 
given by Randall and Wilkins (1945) assumes that the 
rate of change of concentration of trapped electrons fol-
lowing appropriate excitation is given by 

expdn Esn
dt kT

 − = − 
 

 (2.1) 

where n (cm-3) is the concentration of trapped electrons at 
time t (s) and temperature T (K), where T(t) is the heating 
function. E (eV) is the activation energy, s (s-1) the fre-
quency factor and k (eV/K) the Boltzmann constant. In 
the case of thermoluminescence, the solution of this sim-
ple differential equation for a linear heating function, T = 
To+βt, where β (K/s) is the constant heating rate, is 

0

0 exp exp '
'

T

T
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∫  (2.2) 

The TL intensity is assumed to be I = -dn/dt which 
yields, by differentiation of Eq. 2.2 with respect to tem-
perature, 

By equating the derivative of Eq. 2.3 with respect to 
the temperature T to zero, one gets the condition for 
maximum temperature 

2 exp
mm

E Es
kTkT

β  
= − 

 
 (2.4) 

As shown by Hoogenstraaten (1958), the peak tem-
perature Tm shifts to higher temperatures with increasing 
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heating rate β. A plot of ln(Tm
2/β) as a function of 1/Tm is 

expected to yield a straight line. From its slope E/k, the 
activation energy can be readily evaluated. Chen and 
Winer (1970) showed that Eq. 2.4 holds also for non-
linear heating rates where β is replaced by βm, the instan-
taneous heating rate at the maximum. The equation is 
also approximately correct for second- and general-order 
peaks. It has also been shown (see e.g. Chen and 
McKeever, 1997, p. 121) that even in more complex 
situations, where the governing equation is 

exp ( )dn Es f n
dt kT

 − = − 
 

 (2.5) 

where f(n) is a “well behaved” function of the concentra-
tion, the various heating rates method should yield good 
approximate results. This includes the cases of second 
and general-order kinetics where f(n)∝n2 and f(n)∝nb (b ≠ 
1, 2), respectively. The most general TL situation, how-
ever, cannot be presented as Eq. 2.5 (see below). 

The initial idea about the pulse annealing procedure 
of OSL was as follows (Duller, 1994; Li et al., 1997). In 
the simplest case of first-order kinetics, the decline of the 
concentration of trapped electrons with temperature is 
given by Eq. 2.2. If we use a relatively short light expo-
sure for monitoring the concentration, we expect that the 
stimulating light will not change appreciably this concen-
tration and that the intensity I of measured OSL will be 

I Cn=  (2.6) 

where C is a constant. If we repeat this measurement 
following successive stages of annealing to increasing 
temperatures at steps of, say, 10°C, cooling in each cycle 
to room temperature (RT) or somewhat higher tempera-
ture (say, 50°C) and illuminate by stimulating light for, 
say, 0.1 s, we get a decreasing function of the signal vs. 
T, which actually represents n(T). An example can be 
seen in Fig. 1 in Duller (1994). When the kinetics details 
are more complex (see Eq. 2.5), the decreasing function 
n(T) may be of a somewhat different form. Duller has 
also presented the same results as percentage OSL (IRSL 
in his case) lost per annealing cycle. These magnitudes 
represent an approximation to the derivative of n(T) with 
respect to temperature, which, at least for constant heat-
ing rate, is analogous to the TL intensity. Let us denote 
by n(T1) and n(T2) two concentrations at subsequent tem-
peratures T1 and T2 in the pulse annealing sequence. As 
pointed out, these are monitored by short OSL measure-
ments. Let us define 

2 1( ) ( )n n T n T∆ = −  (2.7) 

Note that, at least in the cases mentioned so far, ∆n is 
expected to be negative. In fact, one measures ∆IOSL = 
IOSL(T2)-IOSL(T1), and under these circumstances, one gets 

OSLI n∆ ∝ ∆  (2.8) 

One has to remember that within the framework of the 
model discussed so far, both sides of the Expression 2.8 
are negative. For very small temperature steps ∆T, one 
obviously has 

dn n
dT T

∆≅
∆

 (2.9) 

whereas for larger values of ∆T, the right hand side is an 
approximation to the derivative. In the analogous situa-
tion of TL, the above discussion mentions that I = -dn/dt. 
Remembering that dn/dT in Eq. 2.9 is negative, we can 
see that the analogue to TL intensity in pulse annealing is 

dn n
dt T

β ∆− ≅ −
∆

 (2.10) 

and using Eq. 2.8, we can write that 

OSLIdn
dt T

β ∆− ∝ −
∆

 (2.11)
 

As long as ∆T = T2-T1 is constant, as indeed is the 
case in the reported measurements, we can write 

OSL
dn I
dt

β− ∝ − ⋅∆  (2.12) 

In view of the remark made above, both sides of Ex-
pression 2.12 are positive; comparison with Eq. 2.3 
above makes the analogy with TL closer. Like in Eq. 2.3, 
the factor β in front of dn/dT does not change the tem-
perature of the maximum; it is the variation of β appear-
ing within the square brackets on the right-hand side 
expression that causes the shift of the maximum tempera-
ture. This is, in essence what was done by Duller (1994) 
and by Li et al. (1997). Once the analogy between TL and 
pulse-annealed OSL has been established, the way to use 
the various heating rates methods explained above was 
open. 

Li and Chen (2001) made an important step forward. 
As pointed out above, they reported on a peak-shaped 
curve of the pulse-annealed OSL in quartz. As is known 
(Zimmerman, 1971), TL results in quartz are associated 
with the existence of a hole reservoir from which holes 

X

Am

At

L: M, m

ArEr, sr

A l R: Nr, nr

Et, st, p

OSL

nv

nc

T: Nt, nt

Fig. 1. Energy level diagram of one electron trapping state, T, one kind 
of recombination centre, L, and one reservoir, R. Transitions occurring 
during excitation are given by solid lines, those occurring during the 
heating are given by thick lines, and transitions taking place during 
heating, by dashed lines. The meaning of the parameters is given in 
the text.
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may be thermally transferred into the recombination 
centre, thus contributing to an increase of the sensitivity. 
Equation 2.6 above, which meant that I∝n in the sim-
plest situation, may have a different meaning here be-
cause the magnitude C is increasing in a certain range 
during the heating due to the transfer of holes from the 
reservoir. In the measurements of pulse-annealed OSL, 
the result is a peak-shaped curve as a function of tem-
perature. The intuitive explanation is that C in Eq. 2.6 
increases due to the transfer of holes from the reservoir, 
which increases the measured pulse-annealed OSL in the 
relevant temperature range; this reaches a maximum and 
starts to decrease at higher temperature where either trap 
population or the recombination-centre population is 
depleted and the curve goes down to zero. When the OSL 
reduction rate in quartz is plotted as a function of tem-
perature, a negative minimum is seen at ~280°C and a 
positive maximum at ~330°C (see Fig. 2 by Li and Chen, 
2001). These are associated with the inflection points in 
the original plot of the OSL signal vs. the annealing tem-
perature. Li and Chen (2001) assumed that both the trans-
fer of holes from the reservoir and the recombination 
process are approximately of first order, and used the 
shift of these (negative and positive) peaks with the heat-
ing rate to evaluate the relevant parameters, activation 
energies and frequency factors. 

In the next section, we describe the simulation of 
pulse-annealed OSL, following step by step the experi-
mental procedure, and using a model with one trapping 
state, one kind of recombination centre and one hole 
reservoir. Obviously, the number of trapping states and 
centres in quartz is significantly larger (Bailey, 2001), but 
the model used permits us to explain the essence of the 
effects associated with pulse annealing. We demonstrate 
the occurrence of the peaks in pulse annealing and moni-
tor the variation of the maximum and minimum tempera-
tures with heating rates. We then draw conclusions con-
cerning the circumstances under which one can expect to 
get accurately the associated trapping parameters. 

3. MODEL AND SIMULATIONS 

Figure 1 shows the energy level diagram used for 
simulating the pulse-annealing OSL. This, in fact, is 
identical to the Zimmerman (1971) model explaining the 
predose sensitization effect in quartz in its simplest form, 
namely, when only one reservoir is involved. Here, T is 
the electron trapping state with total concentration of  
Nt (cm-3) and instantaneous occupancy of nt (cm-3), acti-
vation energy of Et (eV) and frequency factor st (s-1), and 
retrapping probability coefficient of At (cm3s-1). L is the 
hole recombination centre with total concentration of  
M (cm-3), instantaneous occupancy m (cm-3), a probability 
coefficient Al (cm3s-1) of trapping holes from the valence 
band and a recombination probability coefficient  
Am (cm3s-1). R is the hole reservoir with total concentra-
tion of Nr (cm-3) and instantaneous occupancy nr (cm-3). 
The activation energy for freeing holes is Er (eV), the 
corresponding frequency factor is sr (s-1) and the retrap-
ping probability for holes is Ar (cm3s-1). nc (cm-3) and  
nv (cm-3) are, respectively, the instantaneous concentra-
tions of free electrons and holes in the conduction and 

valence bands. X (cm-3s-1) is the rate of production of 
electron-hole pairs, which is proportional to the excitation 
dose rate. Thus, if the length of excitation is tD (s), the 
total concentration of produced electron-hole pairs is  
X⋅tD (cm-3), which is proportional to the imparted dose.  
p (s-1) is a magnitude proportional to the stimulating light 
intensity in the OSL measurement stage.  

The kinetic equations governing the process along the 
different stages are as follows, 

( ) exp( / )t
t t t c t t t t

dn A N n n n s E kT pn
dt

= − − − − (3.1)
 

( ) exp( / )r
r r r v r r r

dn A N n n n s E kT
dt

= − − −  (3.2)
 

( )l v m c
dm A M m n A mn
dt

= − −  (3.3)
 

( )c
t t t c m c t

dn X A N n n A mn pn
dt

= − − − +  (3.4)
 

v t c rdn dn dn dn dm
dt dt dt dt dt

= + − −  (3.5)
 

The stages of the experimental procedure are excita-
tion, relaxation, thermal activation and optical stimula-
tion. During excitation, X has nonzero value, the tempera-
ture is kept constant at RT (20°C), and p is set to zero. 
During the relaxation period, the temperature remains the 
same, X is set to zero and p is still zero. In the annealing 
stage, both X and p are kept at zero value, and the tem-
perature is increased linearly, with a heating rate β of 
between 0.5 and 3 K/s at each stage of the pulse anneal-
ing. Finally, for the stimulation stage, we cool the sample 
to 50°C quickly, set p at a constant value (of, say,  
p = 0.01 s-1), keep X = 0 and monitor the simulated OSL 
for 0.1 s, assuming that the intensity of the emitted light 
is given by 

( ) m cI t A mn=  (3.6) 
and integrating over the stimulation time of 0.1 s. The 
contribution of the thermally released electrons and holes 
is taken into consideration in all the stages, however, with 
the given values of the parameters these had real influ-
ence only at the high temperatures of the annealing stage. 
This permitted the use of the alternative way of evaluat-
ing the integral over I(t) as given in Eq. 3.6 at the stimu-
lation stage (see e.g. Chen et al., 2006). When the number 
of thermally stimulated carriers is negligible, as we as-
sume for the phase of optical stimulation, the total OSL 
collected during a length of time tf has been shown to be 

0
0

( )
ft

fI t dt m m= −∫  (3.7)
 

where mo and mf are, respectively, the occupancy of the 
recombination centre at the beginning and the end of the 
optical stimulation time tf.  
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The Mathematica and Matlab ode23 solvers have 
been used for the numerical solution of the simultaneous 
differential equations, and the results were in excellent 
agreement. Also, the two ways of integrating the OSL 
emitted light, namely, numerical integration over Eq. 3.6 
or the use of Eq. 3.7 gave the same results. 

Figure 2 presents the result of simulations of the 
pulse-annealed OSL in the simple situation where the 
reservoir plays no role (Duller, 1994; Li et al., 1997). The 
parameters chosen for this simulation were Et = 1.78 eV; 
st = 1.79×1014 s-1; At = 10-13 cm3s-1; Nt = 1013 cm-3;  
M = 1014 cm-3; Am = 10-12 cm3s-1; Al = 10-12 cm3s-1;  
p = 0.01 s-1. The heating rates used were 0.5, 1, 2 and  
3 K/s and the steps of the pulse annealing were of  
∆T = 5°C (as compared to 10°C in the experiment by Li 
and Chen). As expected, the OSL curves shifted to higher 
temperatures with higher heating rates (Fig. 2a). In  
Fig. 2b, the OSL reduction rate is shown, yielding TL-
like peak-shaped curves which shifted to higher tempera-
tures with increasing heating rates. The inset depicts the 
plot of ln(Tm

2/β) as a function of 1/(kTm) where Tm is the 
maximum temperature in Fig. 2b. The results yield nearly 
a straight line, with a slope of E = 1.86±0.05 eV as com-
pared to Et = 1.78 eV. It should be noted that with  
∆T = 10°C, the activation energy was slightly worse, so it 

seems that due to resolution problems, the smaller is ∆T, 
the better are the expected results. 

Figure 3 shows the results when the reservoir plays 
an important role, as described by Li and Chen (2001). 
The additional parameters’ values are Nr = 5×1012 cm-3, 
Ar = 10-10 cm3s-1, Er = 1.33 eV and sr = 4.25×1011 s-1. The 
OSL results at the same set of heating rates are shown in 
Fig. 3a. The OSL reduction rate is shown in curve b, as 
found with ∆T = 5°C. Both the minimum at ~250°C and 
the maximum at ~290°C shift to higher temperatures with 
higher heating rates, similarly to the reported experimen-
tal results. ln(Tn

2/β) plotted against 1/(kTn) where Tn is the 
minimum temperature, is shown by triangles on the right 
hand side of the inset for the minimum, and the fitted 
straight line yields a slope of 1.26±0.09 eV as compared 
to the value of Er = 1.33 eV entered into the simulation. 
Similar results for the maximum Tm are given by full 
circles in the inset, and the resulting straight line yields 
here E = 1.83±0.05 eV as compared to Et = 1.78 eV. 
Taking into consideration the finite values of ∆T, these 
results seem to support the assertion made by Li and 
Chen (2001) that both the minimum and the maximum 
result from first-order kinetic processes, and therefore, 
the various heating rates method is expected to yield the 
correct activation energies, and hence, the correct life-
time. It should be noted, however, that the low value of 
the retrapping coefficient chosen (10-13 cm3s-1) implies 
that the processes involved are indeed very close to first 
order.  
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Fig. 2. Pulse-annealed signal (a) and OSL reduction rate (b) as simu-
lated using a model with one trapping state and one kind of recombina-
tion centre with heating rates between 0.5 and 3 K/s. The parameters
used for simulation are given in the text. The inset shows ln(Tm2/β) vs. 
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In order to check the possible implication of non-first-
order situations, the run has been repeated with the same 
set of parameters, except that the retrapping probability 
has been 3 orders of magnitude larger, namely,  
At = 10-10 cm3s-1. The OSL signal results are seen in  
Fig. 4a, and the reduction rates in 4b. The plot of 
ln(Tm

2/β) vs. 1/(kTm) is seen in the inset, the full circles 
for the minimum and the empty circles for the maximum. 
Note that in the case of the minimum, Tm is, in fact, Tn as 
mentioned above. The activation energies found from the 
fitted straight lines were 1.42±0.04 eV for the minimum, 
as compared to the inserted value of 1.33 eV for the res-
ervoir, and 1.48±0.11 eV for the maximum as compared 
to 1.78 eV chosen for the trap (see the inset). The devia-
tion from the value used for the simulation as well as the 
consequences concerning the expected lifetimes at room 
temperature will be discussed below.  

Another point to be mentioned is that in Fig. 3a, the 
curves are practically horizontal up to ~175°C whereas in 
Fig. 4a, they are slightly decreasing in this range. In 
comparison, curve 1a (natural aliquots) given by Li and 
Chen (2001) starts nearly horizontally whereas curve 1b 
(sample annealed at 500°C and irradiated by 50 Gy β 
dose) is decreasing between 100 and 150°C. We have 
tried to identify the main reason for this behaviour, and 
found that the main parameter involved is p, associated 
with the intensity of the stimulating light. Figure 5 shows 
the curves of pulse-annealing OSL for p = 0.01, 0.05 and 
0.1 s-1. Whereas in the case of low light intensity the OSL 
curve is temperature independent up to ~200°C, it yields 
a decreasing function for higher light intensity up to 
~180°C, similarly to the mentioned experimental results. 

4. DISCUSSION AND CONCLUSION 

In the present work, we have shown that the pulse-
annealing curves previously discussed by Duller (1994) 
for potassium feldspar and by Li and Chen (2001) for 
quartz, can be simulated using a relatively simple energy 
level model. The shape of the remaining percentage IRSL 
signal as given by Duller and the percentage lost per 
annealing pulse derived thereof could be simulated using 
a simple model with one trapping state and one kind of 
recombination centre. The effect which includes sensiti-
zation due to the role of a reservoir, as seen in quartz, 
could also be simulated. The method of various heating 
rates (VHR) as used by Li and Chen (2001) has yielded 
very good results both for the negative minimum and the 
positive maximum, provided that the retrapping probabil-
ity was relatively small. With higher values of the retrap-
ping probability, the resulting activation energies were 
off by up to nearly 20%. This has probably to do with the 
fact that the VHR method is strictly accurate only for 
single first-order peaks. The situation here with the trap 
and reservoir appears to be significantly different when 
retrapping is strong. The deviation of the effective life-
times from the “real” lifetimes is rather significant here. 
For the reservoir, with the chosen parameters, the lifetime 
τ = s-1exp(E/kT) where T = 293 K (RT), is 1.78×1011 s or 
5630 years. For the evaluated value of 1.42 eV and  
Tm = 483 K at the minimum, we get 

( ) skTE
kT

Es m
m

eff
13

2 103.2exp ×== β  which yields for 

RT, T = 293 K, τ = 1.16×1011 s = 3700 years, of the same 
order of magnitude as the correct value. The deviation is 
larger for the maximum. For Et = 1.78 eV and  
st = 1.79×1014 s-1, we get at RT τ = 2.32×1016 s = 
7.35×108 y. However, for the evaluated parameters  
Et = 1.48 eV and Tm = 531 K we get seff = 3.4×1012 s-1 
which yields τ = 8.4×1012 s = 2.68×105 y at RT, more 
than three orders of magnitude too low. The conclusion 
here is that the activation energies reached by the various 
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heating rates method and the lifetimes derived from them 
are valuable only if the first-order condition associated 
with low retrapping holds true. 

In an attempt to understand better the underlying rea-
sons for the peak shape of the pulse-annealed OSL signal, 
we have monitored the simulated concentrations nt, nr and 
m at the end of the irradiation stage with the mentioned 
set of parameters and with At = 10-13 cm3s-1. The results 
are shown in Fig. 6a. nt(T) and nr(T) are decreasing func-
tions whereas m(T) is first increasing due to the transfer 
of holes from the reservoir, and then it decreases. One 
can associate the OSL intensity with the product of m and 
nt. This is not a rigorous statement since the effect of the 
concentration of trapped electrons nt(T) on the measured 
OSL takes place through the dependence of the concen-
tration of free electrons nc(T) on nt(T). However, the 
agreement between the OSL curve and the product 
m(T)⋅nt(T) as shown in Figure 6b is excellent. The func-
tion m(T)⋅nt(T) is the product of a peak-shaped function, 
m(T), and a decreasing function, nt(T), and therefore the 
product is also peak shaped, and shifted to lower tem-
peratures compared to m(T). As pointed out, the OSL 
peak looks practically the same as the product m(T)⋅nt(T).  

In conclusion, the pulse-annealing results could be 
simulated and yielded at least qualitatively agreement 
with experimental results in potassium feldspars and 
quartz. The use of the method of various heating rates has 
also been demonstrated in the case of one trapping state 
and one recombination centre, as well as cases which also 
include a reservoir. The activation energies and frequency 
factors were retrievable using the VHR method provided 

retrapping was relatively low, and then the evaluated 
lifetimes at RT are reliable. The resolution depended on 
the size of the temperature step, and the results were more 
reliable with ∆T = 5°C than with ∆T = 10°C. The evalu-
ated parameters and lifetimes were much less accurate 
when the retrapping probability was larger. 
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Fig. 6. For the set of parameters given in the text and with a small
retrapping probability At = 10-13 cm3s-1, the simulated functions nt(T), 
nr(T) and m(T) are shown in (a). The simulated OSL and m(T)⋅nt(T) are 
shown in (b). 
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