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Abstract: Abstract: Abstract: Abstract: Abstract: The paper presents an application of a Genetic Algorithm (GA) to finding appro-
priate parameter values for the numerical simulation of quartz thermoluminescence (TL) and
Optically Stimulated Luminescence (OSL). It is shown that using a genetic algorithm it is
possible to achieve a very good match between simulated and experimentally measured ther-
mal activation characteristics of fired quartz.
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1. INTRODUCTION

Quartz is one of the main materials used for the dat-
ing of geological sediments and fired pottery. A large body
of research has been carried out into its properties in the
recent years. The accurate knowledge of its properties will
allow the development of more robust and reliable dat-
ing techniques.

The thermal activation characteristics (TAC) describes
how the sensitivity to radiation of a given sample changes
with its heating. The sensitivity changes influence the pro-
tocols used for the estimation of the absorbed dose. There-
fore, the knowledge of their precise character allows the
employment of relevant corrections which increase the
precision and accuracy of the methods employed.

Numerical modelling can be an important tool in in-
vestigating the sensitivity changes in quartz. Potentially,
it allows a comprehensive description of the luminescence
phenomena in this material.

The investigated model is a band model of quartz with
a number of electron and hole trapping centres. It was
first suggested by (Zimmerman, 1971). The observed ther-
moluminescence and optically stimulated luminescence
and the sensitivity changes are a result of charge trans-
port between the centres via the conduction and valence
bands. Mathematically, the model comprises a set of sev-
eral coupled first-order differential equations (Bailey,

2001; Adamiec, 2005), which describe the time evolution
of electron and hole populations within quartz under vari-
ous conditions like irradiation, light illumination, heat-
ing. The problem encountered in accurately simulating
luminescence using this approach (assuming the basic
equations correctly describe the physical system), is find-
ing a set of numerical parameter values that yield model
output which accurately reflects the behaviour of real
samples. Until now, parameter selection was made by the
modeller, by manually changing the model parameters
and comparing the outcome of the model with the mea-
sured values – a very time-consuming process. Using this
long process, a good general model, that predicts most of
the key features of quartz luminescence, has indeed been
developed (Bailey, 2001).

In the present work we apply, for the first time, a ge-
netic algorithm (GA) to the problem of finding param-
eter values for the model. We are primarily concerned with
the simulation of pre-dose sensitisation in quartz repre-
sented by the above mentioned TAC. An attempt to simu-
late the shape of the TAC was presented in (Adamiec,
2005), achieving qualitative resemblance of the simulated
and experimental TACs. Here we show that it is possible
to find parameter values providing a significantly better
match of the simulated and experimental results by means
of an automatic parameter search.
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2. EXPERIMENTAL DETAILS

The TL measurements presented here were per-
formed with the use of an automated reader produced by
the Risø National Laboratory type TL-DA-12 (Bøtter-
Jensen and Duller, 1992). The reader was fitted with the
EMI 9635QA PM tube. The emitted light was filtered with
a combination of filters Schott BG-39 and Hoya HA-30
(maximum transmission was 55% @ 360 nm, FWHM
60 nm). The heating rate employed was 2 Ks-1 during the
TL readout and 5 Ks-1 during activation stages.

For all the measurement the fraction of 90-125 µm was
used. Geological samples were subjected to treatment
with HCl and 48% HF and density separation to elimi-
nate heavy minerals in case should they be present. The
summary of samples used is given in Table 1. Sample Ark
(a natural crystal) was crushed and the 90-125 µm frac-
tion was extracted. The grains of all samples were then
annealed in air at 1200°C for 10 h.

The samples were irradiated with a β-dose of 20 Gy
prior to the measurement of the TAC. Subsequently they
were preheated at 180°C. The sensitivities were measured
using a test dose of 20 mGy and heating to 180°C. The
activation temperatures were in the range of 220°C and
610°C in 30°C steps.

The heating rate employed was 2 Ks-1 during the TL
readout and 5 Ks-1 during activation stages.

Sample Site Description
symbol

Ark Unknown Arkansas crushed single crystal

BDH N/A Commercial grained quartz supplied by BDH

SOT Stoke-on-Trent Quartz extracted from sand used for
porcelain production at Royal Doulton,
Stoke-on-Trent

Merck N/A Commercial grained quartz supplied by Merck

Table 1. A List of samples used in the current work

Fig. 1. A scheme of the investigated model. R1, R2, R3, L and K are hole trapping centres and the remaining ones
are electron trapping centres. G indicates the charge pair generation under irradiation
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3. NUMERICAL MODEL

In the present model it is assumed that hole and elec-
tron traps are characterised by the depth Ei, frequency
factor se,i (sh,i), concentration of traps Ni, concentration of
trapped charge ni and trapping probability At,i. Hole traps
are additionally characterised by the recombination prob-
ability Ar,i (i is the number of trap) and electron traps are
additionally characterised by optical detrapping factor gi

(the probability of optical detrapping of an electron per
second; it is dependent on the photon flux and the inter-
action cross section). The populations of charge in the
conduction band and valence band are denoted nc and nv

respectively. It is assumed that the eviction probability of
a trapped hole into the valence band per unit of time is
governed by the Arrhenius equation and is proportional

to kT
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where G is the charge generation rate (rate of electron-
hole production by ionising radiation) during irradiation
and F is the photon flux during optical stimulation (not
used in the current investigation).

The rate of recombination of electrons with holes, or
emission rate, in trap i is calculated as

iric AnnI ,⋅⋅=   (3.5)

The scheme of the general model can be seen in Fig. 1.

4. THE GENETIC ALGORITHM

The GA (Holland, 1975) is a method of optimisation
inspired by the biological mechanisms of evolution.
It starts with a population of individuals randomly gener-
ated in a defined search space. In our case, each individual
consists of a set of parameter values for the model cho-
sen to simulate the shape of the TAC.

To form the next generation of the population, indi-
viduals are selected according to their fitness – the fittest
individuals stand a better chance of survival. For each
parameter set, the system of differential equations is
solved simulating the experimental sequence. Then, the
sum of the squared differences (SSD) between experimen-
tal and simulated TAC is calculated and defined as the
fitness of the individual.

Because selection cannot introduce new individuals,
i.e. new points in the search space, two other mechanisms
are used with that aim: crossover and mutation.

Crossover combines the genomes of the selected par-
ents to produce an offspring. It is performed on a fixed
number of individuals randomly chosen with a probabil-
ity proportional to their fitness. We used two different
crossover operators. The first one obtains the parameters
of the offspring genome as a weighted average of the cor-
responding parents’ parameters1 using random weights
(other weighing is also possible, e.g. with weights inversely
proportional to the SSD). The second operator swaps
random parameters or entire traps in randomly selected
pairs of individuals.

The mutation operator modifies, with a low probabil-
ity, a random parameter from a random individual.

The GA is iterated, creating new generations of con-
stant size, until the fitness function of the best individual
in the population does not change significantly over sev-
eral generations.

There are many advantages of the genetic algorithm.
First, GA’s are not constrained by assumptions about the
search space such as continuity or the existence of deriva-
tives. Secondly, GA’s are much less prone to getting stuck
in local minima than the traditional local search algo-
rithms because they conduct parallel searches over the
whole search space thus improving the quality of the whole
population. This feature is particularly valuable in com-

plex search spaces, where a large number of parameters
need to be adjusted (in our case 20 or more parameters).

5. IMPLEMENTATION AND RESULTS

The software used here consists of three modules writ-
ten in C and Borland Delphi.

The first module is the program for editing simulation
sequences, which allows creation and modification of
simulation sequences. For each step the initial tempera-
ture, final temperature, duration, light flux, and dose rate
can be specified.

The second module solves the charge transport equa-
tions. The inputs are the model parameters and the simu-
lation sequence as well as initial charge concentrations if
desired. The solver of the differential equations used was
the stiff solver from the libraries supplied by NAG Inc.
(Numerical Algorithms Group). The stiff solver allows
rapid solution of the charge traffic equations, even when
simulating heating to a few hundred degrees Celsius.

The third module implements the genetic algorithm.
The algorithm is customizable by a number of parameters
provided in a configuration file, for example number of
generations, crossovers and mutations per iteration.

New individuals were generated randomly from the
defined search space (the ranges of the parameters were
chosen based on experience). Instead of using the trap
depth E, the equivalent peak temperature was used. The
trap depth was then calculated using the peak tempera-
ture and the frequency factor s using the first order TL
peak formula assuming a heating rate of 2Ks-1. Using the
equivalent peak temperature allowed a more intuitive
control of the behaviour of the traps. For parameters s,
Ar, At and N their logarithms were randomly generated
from a uniform distribution from the given range. The
logarithms were generated because initially the ranges of
the parameters often spanned 4-5 orders of magnitude.

Taking into account the Zimmerman’s model, and the
results of (Bailey, 2001) and (Adamiec, 2005) models con-
sisting of several traps was used. For sample SOT the same
model was used as in (Adamiec, 2005). For the remain-
ing samples
• five electron traps:

– T1 responsible for the ‘110°C peak’,
– T2 responsible for the TL 230 °C peak,
– T3 responsible for the OSL emission (fast)

and TL peak in the region of 320°C,
– T4 corresponding to the medium OSL component
– T5 corresponding to the slow component

• five hole traps:
– non-luminescent centres R1 and R2 responsible

mainly for the first sensitisation stage,
– non-luminescent R3 responsible for the high

temperature sensitivity increase
– luminescent centre L
– K-centre

1 Here the regular weighted average is calculated for the trap depth and optical detrapping probability. For the other parameters, the weighted
geometric average is used to allow many orders of magnitude of their values. If w1 and w2 are the weights and x1 and x2 are the values than
the new value is calculated as ˆ ex = xp  ( ) ( )
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2211 lnln
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The description of electron traps T4 and T5 should not
be taken literally since no additional checks were per-
formed to confirm their labelling.

Bailey (2001) suggests the inclusion of a larger num-
ber of electron traps but here it was decided that a TAC
curve alone was insufficient to estimate the model param-
eters for those traps and it was advantageous to decrease
the number of searched parameters. It was thought that
this would not affect the conclusion about the applicabil-
ity of the genetic algorithm to the current problem. It can
be expected that allowing the presence of additional traps
will improve the model’s applicability.

In the TAC simulations the dose of 1 Gy was set to
produce a charge of 2.5·1010 electron-hole pairs. The dose
rate was 0.4 Gy·s-1. The sensitivity was measured using a
test-dose of 20 mGy and heating to 180°C. All irradiations
were performed at 20°C and were followed by a 5 s pause
to allow system relaxation (decrease of the charge popu-
lations in the conduction and valence bands). After each
heating the cooling stages were also simulated to reflect
the experimental situation as closely as possible.

To start with, parameter ranges were defined based on
previous experience. The GA was then executed for sev-
eral generations to obtain an initial fit. After the initial fit
was obtained sometimes it was necessary to re-adjust the
parameter ranges. Also the initial fits were performed with
a smaller number of traps and after a fit was obtained the
parameters were used to define a new, smaller search

space. Also at this stage an additional trap was added to
reproduce some of the more detailed features of the TAC.
For example in the sample Ark, initially the trap respon-
sible for the slow component was not included. After a fit
was reached, the trap OSLS was included so that its pres-
ence would account for the sensitivity decrease in the
range 400-500°C.

The calculations were performed for four TACs of
fired quartz. The population size was 300 individuals.
In each iteration, there were 30 to 60 random pairs and
10-20 best pairs crossed over (1st individual with 2nd, 2nd

with 3rd and so on), the best individual was crossed with
10-20 next best individuals, and in 15 random pairs the
traps or single parameters were swapped. In each gen-
eration, in 20 random individuals random mutations in
a random parameter were introduced. There were up to
200 iterations necessary to reach the presented fits.

The experimental and simulated TACs are given in
Fig. 2 and the obtained parameter values are shown in
Table 2. It can be seen that a very good agreement be-
tween experiment and simulations was achieved for all the
investigated samples. It can be seen that the degree of
sensitisation varies largely between the samples. For
sample SOT the maximum sensitisation is around 3
whereas for sample Merck it is close to 300. The differ-
ences can be accommodated for by the relevant choice of
trap populations and trapping and recombination prob-
abilities.

Fig. 2. The measured and simulated thermal activation characteristics of the investigated samples.
a) Ark, b) BDH, c) SOT, d) Merck

0

5

10

15

20

25

0 200 400 600

Activ at ion  temp e ratu re  [oC ]

S
e

n
s

it
is

a
ti

o
n

 S
n
/S

0

Experimental

Simulated

a)

0

20

40

60

80

100

120

140

160

0 200 400 600

Activ at ion  temp e ratu re  [oC ]

S
e

n
s

it
is

a
ti

o
n

 S
n
/S

0

b)

0

0.5

1

1.5

2

2.5

3

3.5

0 200 400 600
Activatio n  te mp er atu r e [oC]

S
e

n
s

it
is

a
ti

o
n

 S
n
/S

0

c )

0

50

100

150

200

250

300

0 200 400 600
Activ at ion  temp e ratu re  [oC ]

S
e

n
s

it
is

a
ti

o
n

 S
n
/S

0

d)

[°C] [°C]

[°C] [°C]



13

G. Adamiec et al.

The calculations were very intensive and lasted ap-
proximately 24-72 hour operation of a PC with a Pentium
IV processor. Although it cannot be excluded that in the
future it might be possible to reduce the calculation time
using specialised versions of the genetic algorithm, as well
as using more experimental data.

6. DISCUSSION AND FINAL CONCLUSIONS

The work is at initial stages but the initial results are
very encouraging. The obtained match is very good. It
shows that the shape of the thermal activation character-
istics can indeed be reproduced by the investigated model
– at least in fired quartz.

Table 2. A list of parameters obtained for the samples under investigation. The first column contains the
calculated equivalent peak temperature as described in the main text

Ark       
 Equivalent 

peak temp. 
(ºC) 

Trap 
depth E 
(eV) 

Frequency 
factor s 

Population Trapping 
probability  
A (s-1) 

Recombination 
probability  
Ar (s-1) 

110º peak 90 0.99 1.00•1013 5.28•1011 5.68•10-7  
230º peak 230 1.55 5.00•1014 4.67•108 9.01•10 -9  
Fast component 312 1.70 5.00•1013 4.45•1011 1.54•10-10  
Medium component 320 1.60 4.41•1012 3.52•1013 1.50•10-10  
Slow component 458 1.91 1.21•1012 2.24•1013 1.75•10-13  
Hole centre R1 201 1.44 2.92•1014 9.09•1012 2.75•10-10 6.21•10-12 

Hole centre R2 265 1.38 1.03•1012 5.10•1014 2.26•10-13 2.09•10-12 

Hole centre R3 573 2.82 5.58•1015 4.53•1011 1.57•10-10 1.58•10-16 

Luminescence centre 1500 5.07 1.00•1013 2.76•1012 2.69•10-11 1.75•10-15 
K centre 1500 5.07 1.00•1013 3.77•1011 1.02•10-11 1.95•10-12 
BDH       
110º peak 90 0.99 1.00•1013 2.00•1011 1.00•10-10  
230º peak 230 1.55 5.00•1014 1.46•108 1.89•10 -9  
Fast component 325 1.69 1.88•1013 3.73•1010 6.11•10-12  
Medium component 446 1.86 9.28•1011 6.01•1013 1.12•10-12  
Slow component 466 2.32 6.16•1014 8.10•1010 3.26•10-12  
Hole centre R1 206 1.56 4.68•1015 5.43•1013 8.14•10-10 9.71•10-11 

Hole centre R2 342 1.76 3.15•1013 3.23•1012 6.82•10-11 2.14•10-11 

Hole centre R3 585 3.09 1.35•1017 6.86•1012 4.91•10-11 4.51•10-14 

Luminescence centre 1500 5.42 1.00•1014 3.48•1013 1.31•10-11 7.23•10-15 
K centre 1500 5.42 1.00•1014 1.34•1011 9.72•10-11 1.36•10-13 
SOT       
110º peak 89 0.70 7.07•108 1.00•108 2.00•10 -9  
230º peak 252 1.55 5.00•1014 1.00•107 1.00•10 -8  
Fast component 308 1.60 8.50•1012 1.00•109 3.00•10-10  
Deep electron trap  4.00  5.00•1010 2.00•10-11  
Hole centre R1 243 1.06 2.06•109 1.81•1013 2.77•10-12 1.43•10-12 

Hole centre R2 295 1.86 4.44•1015 1.62•1012 1.08•10-11 1.20•10-13 

Hole centre R3 551 2.48 1.26•1014 1.76•1013 2.96•10-13 4.35•10-12 

Luminescence centre  3.20  4.44•1011 1.20•10-11 1.40•10-11 
Merck       
110º peak 90 0.99 1.00•1013 1.80•1011 1.00•10-10  
230º peak 230 1.55 5.00•1014 5.69•108 8.23•10-9  
Fast component 312 1.70 5.00•1013 7.29•1010 2.40•10-11  
Medium component 451 2.23 3.20•1014 2.20•1010 2.48•10-14  
Slow component 597 2.28 1.19•1012 2.95•1011 4.40•10-10  
Hole centre R1 193 1.41 2.40•1014 9.01•1013 2.21•10-10 1.58•10 -9 

Hole centre R2 269 1.57 5.40•1013 1.68•1012 6.31•10-11 2.50•10-13 

Hole centre R3 524 2.68 9.49•1015 3.25•1012 4.70•10-11 2.84•10-14 

Luminescence centre 1500 5.07 1.00•1013 2.28•1013 2.09•10-11 2.99•10-13 
K centre 1500 5.07 1.00•1013 2.54•1011 2.82•10-14 1.45•10-11 
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In the current work only the form of the TAC was con-
sidered. For future work there exists the need to take into
account more experimental data.

In the case of using a multitude of experimental data
an appropriate definition of the fitness function used in
the GA plays a crucial role so that the different experi-
mental results have an appropriate influence on the final
result.

It could be advantageous to fit some parameters sepa-
rately thus allowing even better performance of the ge-
netic algorithm. For example it could help to employ the
isothermal sensitisation curves, dose growth curves and
similar measurements. The isothermal sensitisation curves
could allow fitting of some of the parameters, for example
the trap depths and frequency factors of traps R1 and R2

and later from other data the remaining parameters.
It might also be possible to employ traditional

minimisation algorithms once the fit obtained using the
GA is close, similarly as in (Garcia-Talavera and Ulicny,
2003).

One of the problems not dealt with so far is the ther-
mal lag during the heating stages. Although the model
parameters reproduce experimentally observed
behaviour, they are not necessarily the “real” values of
the parameters because they are affected by the thermal
lag (this will be especially true for the high temperature
data). One of the possibilities to deal with the problem
would be the introduction into the differential equations
of a term allowing for the thermal lag – such an equation
would have to be determined experimentally for the used
measuring system.

Despite that the results presented here are only pre-
liminary, it can be expected that approaches like the ge-
netic algorithm may help to further improve future mod-
els of luminescence in quartz and allow finding param-
eters for a wide range of samples and therefore allowing
better possibilities for estimating various absorbed dose
estimation techniques.
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